Complete intersections in rational homotopy theory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disconnected Rational Homotopy Theory

We construct two algebraic versions of homotopy theory of rational disconnected topological spaces, one based on differential graded commutative associative algebras and the other one on complete differential graded Lie algebras. As an application of the developed technology we obtain results on the structure of Maurer-Cartan spaces of complete differential graded Lie algebras.

متن کامل

Rational homotopy theory

1 The Sullivan model 1.1 Rational homotopy theory of spaces We will restrict our attention to simply-connected spaces. Much of this goes through with nilpotent spaces, but this will keep things easier and less technical. Definition 1. A 1-connected space X is said to be rational if either of the following equivalent conditions holds: 1. π∗X forms a graded Q-vector space. 2. H̃∗X forms a graded Q...

متن کامل

M392c Notes: Rational Homotopy Theory

1. Postnikov Towers and Principal Fibrations: 8/27/15 1 2. Serre Theory: 9/1/15 4 3. Rational Homotopy Groups of Spheres: 9/3/15 7 4. Commutative Differential Graded Q-algebras and Model Categories: 9/8/15 9 5. Homotopy in Model Categories: 9/15/15 13 6. Today is the Cofibrantly Generated Model Categories Day: 9/17/15 16 7. Homotopy Theory of CDGAs: 9/22/15 19 8. Minimal Sullivan Models and Sim...

متن کامل

Banach Algebras and Rational Homotopy Theory

Let A be a unital commutative Banach algebra with maximal ideal space Max(A). We determine the rational H-type of GLn(A), the group of invertible n × n matrices with coefficients in A, in terms of the rational cohomology of Max(A). We also address an old problem of J. L. Taylor. Let Lcn(A) denote the space of “last columns” of GLn(A). We construct a natural isomorphism Ȟ(Max(A);Q) ∼= π2n−1−s(Lc...

متن کامل

Se p 20 03 CYCLIC MAPS IN RATIONAL HOMOTOPY THEORY

The notion of a cyclic map g : A→ X is a natural generalization of a Gottlieb element in πn(X). We investigate cyclic maps from a rational homotopy theory point of view. We show a number of results for rationalized cyclic maps which generalize well-known results on the rationalized Gottlieb

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2013

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2012.08.009